Image Compression Using Partitioning Around Medoids Clustering Algorithm
نویسنده
چکیده
Clustering is a unsupervised learning technique. This paper presents a clustering based technique that may be applied to Image compression. The proposed technique clusters all the pixels into predetermined number of groups and produces a representative color for each group. Finally for each pixel only clusters number is stored during compression. This technique can be obtained in machine learning which one of the best methods for clustering is. The k-medoids algorithm is a clustering algorithm related to the K-means algorithm and the medoidshift
منابع مشابه
A K-means-like Algorithm for K-medoids Clustering
Clustering analysis is a descriptive task that seeks to identify homogeneous groups of objects based on the values of their attributes. This paper proposes a new algorithm for K-medoids clustering which runs like the K-means algorithm and tests several methods for selecting initial medoids. The proposed algorithm calculates the distance matrix once and uses it for finding new medoids at every i...
متن کاملK-medoids Clustering Using Partitioning around Medoids for Performing Face Recognition
Face recognition is one of the most unobtrusive biometric techniques that can be used for access control as well as surveillance purposes. Various methods for implementing face recognition have been proposed with varying degrees of performance in different scenarios. The most common issue with effective facial biometric systems is high susceptibility of variations in the face owing to different...
متن کاملUsing Modified Partitioning Around Medoids Clustering Technique in Mobile Network Planning
Optimization mobile radio network planning is a very complex task, as many aspects must be taken into account. Deciding upon the optimum placement for the base stations (BS’s) to achieve best services while reducing the cost is a complex task requiring vast computational resource. This paper introduces the spatial clustering to solve the Mobile Networking Planning problem. It addresses antenna ...
متن کاملA simple and fast algorithm for K-medoids clustering
This paper proposes a new algorithm for K-medoids clustering which runs like the K-means algorithm and tests several methods for selecting initial medoids. The proposed algorithm calculates the distance matrix once and uses it for finding new medoids at every iterative step. To evaluate the proposed algorithm, we use some real and artificial data sets and compare with the results of other algor...
متن کاملEnhancing Clustering Algorithm to Plan Efficient Mobile Network
With the rapid development in mobile network effective network planning tool is needed to satisfy the need of customers. However, deciding upon the optimum placement for the base stations (BS) to achieve best services while reducing the cost is a complex task requiring vast computational resource. This paper addresses antenna placement problem or the cell planning problem, involves locating and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011